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IN A COLLISION-FREE PLASMA* + 

F.   J,   Fishman,   A.   R,   Kantrowitz and H.   E.   Petschek 

Avco-Everett Research Laboratory 

Everett,   Massachusetts 

ABSTRACT 

In high temperature low density plasmas collisional relaxation 

becomes slow compared to other characteristic times (collision free 

plasma).     It seems likely that      under such circumstances more powerful 

dissipative mechanisms would appear and the understanding of these 

mechanisms is basic to the treatment of containment and flow problems. 

It is known that shock waves propagating perpendicular to a magnetic 

field can be much thinner than a mean free path,  which implies that more 

powerful dissipative mechanisms must exist.     Thie-^paper -is an attempt   is   wcJ^ 

to identify the dissipative mechanisms operative in a shock wave with 

randomized magnetohydrodynamic waves of large amplitude.    The 

entropy production process is the scattering of waves on waves.     The 

typical «wave mean free path" is comparable to an ion Larmor radius 

inside a shock front.    The short mean free path for this scattering 

process implies that continuum magnetohydrodynamics can be applied 

in many cases even when the interparticle mean free path is quite   large. 

Both the shock thickness and its dependence on the Alfven Mach number 

obtained in this manner are in agreement with "MAST" shock tube 

experiments. 
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Introduction 

The basic dissipative mechanisms which occur in a plasma are of 

fundamental importance in determining the behavior of the plasma.     There 

has been considerable evidence from high temperature plasma experiments 

that the dissipation rates are much more rapid than would be expected on 

the basis of interparticle collisions.    In these cases,   this results in a 

rapid diffusion of the plasma to the walls.    Similar rapid diffusion proc- 

esses would be of interest in many astrophysical situations such as the 

penetration of gas streams from the sun into the earth's magnetic field. 

In terms of the orientation of this conference towards continuum 

treatments of magnetohydrodynamics, the existence of rapid dissipation 

mechanisms implies that continuum treatments (in the aerodynamic sense) 

are applicable under gas conditions where,   at first sight,   one might not 

expect them to be.    The fundamental basis of continuum theories is that 

a dissipative randomizing process exists on a scale small compared to the 

characteristic size of the flow field.    Rapid dissipation implies a mean free 

path for randomization which is smaller than one would have anticipated. 

In Reference 1,   a suggested classification of different regions in 

plasmas was made on the basis of some of the characteristic lengths in 



the plasmas.    Regions were defined in terms of temperature and density 

where one might expect the plasma to have different fundamental charac- 

teristics.    A map representing this classification is reproduced in Fig.   1 

in this paper.     We will investigate in particular the dissipation mechanisms 

occurring in the M region.     This region is defined by three principal 

boundaries:    (1)   that the mean free path for interparticle collisions de- 

fined by the coulomb cross-section is larger than the ion Larmor radius; 

(2)   that the electron thermal motion be non-relativistic; and (3)   that the 

ion Larmor radius be less than the characteristic size of the flow field, 

which in Fig.   1 has been arbitrarily chosen as  1 cm.    In order to empha- 

size magnetohydrodynamic   phenomena ,   this map was drawn under the 

assumption that the magnetic energy density was equal to the particle 

pressure. 

As can be seen from Fig.   1,  this region encompasses many high 

temperature plasma experiments,  and,   if the appropriate change in the 

length scale is also made,   includes much of the interplanetary and inter- 

stellar gas.     Further,   it has been shown that the dissipation mechanism 

which occurs in this region must be more rapid than that associated with 

ordinary interparticle collisions. 

Exhibition of Dissipation by Shock Waves 

The problem which seems best suited for studying dissipation 

mechanisms is the investigation of the structure of a shock wave.    In the 

first place,   the conservation equations require the existence of a dissipa- 

tion mechanism in the shock front.    Secondly,   a first integral of the con- 

servation equations in the shock wave can be obtained readily.     Thus, 



considerable knowledge of conditions inside the shock wave is available 

and is independent of the dissipation mechanism. 

For simplicity,  we shall consider a shock wave moving perpen- 

dicular to the magnetic field lines.    In order to have a well-defined gas 

state ahead of the shock wave,   we will assume the gas temperature there 

to be zero.    Other choices would,   of course,   be possible.    However,   this 

case is most easily approximated experimentally.    The minimum velocity 

for such a shock wave is the small amplitude disturbance speed through 

the cold plasma,  and this is the Alfven speed.     We will consider shock 

waves of moderate strength,   i.e. ,   gases where the ratio of the supersonic 

stream velocity to the Alfven speed (the Alfven Mach number) is between 

1. 5 and 3. 

In many astrophysical or laboratory cases,   shock waves are formed 

by the steepening of gradual compression fronts.    As the steepness of the 

front increases,  diffusion processes become important and at some steep- 

ness can transfer sufficient momentum and energy,   and produce sufficient 

entropy so that a steady state shock profile is attained.     Conversely,   if a 

shock is formed from a very steep pulse and diffusion processes exist 

which can act over a wider range than the pulse,   these processes would 

tend to broaden the shock wave.    One would therefore expect that the dif- 

fusion process which can act at the minimum steepness, i.e. ,   at the long- 

est range,  will be the one which controls the shock structure,   provided 

that it can produce sufficient dissipation.    Although this suggestion has by 

no means been proved,   it is sufficiently plausible that it will be used in a 

qualitative sense and will be referred to as the thickest shock hypothesis. 
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In an un-ionized monatomic gas,   the steepening process is inhibited 

and a steady state shock structure is obtained when the shock thickness is 

of the order of the mean free path for interparticle collisions.     The argu- 

ment in Reference 2 for rapid dissipation rates is based on the fact that 

for a plasma under the conditions mentioned above,   the steepening of the 

pulse is not inhibited at this point.    Physically, this can be explained in 

terms of the heat conduction and viscosity coefficients being appreciably 

decreased when the particles go through mar ^ gyro orbits between colli- 

sions.     The next longest basic dimension of the plasma which could have 

an effect on limiting the shock thickness is the characteristic ion Larmor 

radius. 

In this paper,   we will attempt to show that randomized magneto- 

hydrodynamic waves can provide the dissipation necessary when the shock 

thickness is of this order of magnitude.    It has been suggested by Kahn 
5 

and by Parker    that a dissipative mechanism can be found in terms of 

plasma oscillations which leads to a shock thickness of the order of the 

Debye length.     Gardner,   et al    have suggested that a permanent shock 

structure can be found from a series of pulses whose  steepness is asso- 

ciated vith the characteristic electron Larmor radius.       Both of these 

thicknesses are appreciably smaller than the one suggested here and one 

would therefore expect that these shock structures would be broadened out 

by the mechanisms  suggested here. 

Proposed Shock Model 

The fundamental model for the shock wave which is proposed here 

is that in the  shock front the thermal energy which is produced is initially 
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almost all invested in a random distribution of magnetohydrodynamic waves. 

That is to say,  the dissipation in the shock wave excites only the relatively 

few degrees of freedom of the gas which are associated with magneto- 

hydrodynamic waves.    The much larger number of degrees of freedom 

corresponding to the actual thermal velocities of particles are not appre- 

ciably excited in the shock front itself.    The relaxation from wave energy 

to a Maxwelliam distribution where the bulk of the thermal energy is asso- 

ciated with individual particle motions is a slower process and takes place 

behind the shock front,   i. e. ,  behind the region where most of the density 

change occurs. 

We will now view the gas from a scale that is sufficiently gross so 

that the random distribution of waves may be thought of as the microscopic 

structure of the plasma.     The interactions between waves,   which result 

from non-linear terms, will then increase the randomness in the waves 

and correspond to an increase in entropy.       The basic dissipative mechan- 

ism is then the scattering of waves on waves. 

That this dissipation mechanism is more rapid than interparticle 

collisions is suggested by a comparison of the scattering lengths or mean 

free paths for the two cases.    If the wave amplitudes are sufficient to 

change the gas state appreciably from its average value,   the propagation 

velocity of a single wave will be changed appreciably by the other waves 

present.    In going a wavelength of the disturbing field a wave of comparable 

wavelength will then have its phase changed appreciably.     This corresponds 

to a scattering of the wave.    In the presence of large amplitude waves,  the 

mean free path of the waves is therefore of the order of the wavelength. 
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In a sufficiently high temperature plasma, we may expect the interparticle 

mean free path to be appreciably larger than the typical wavelengths which 

can arise. 

An alternate description of the entropy production may be obtained 

if one views the waves as groups of particles which tend to move coher- 

ently.    The interaction of two such groups will be stronger than the inter- 

action of individual particles and,   therefore,  these groups will have a 

shorter mean free path for collisions with each other than the individual 

particles in the gas.    The entropy associated with the motion of these 

groups will,   therefore,   be increased more rapidly than the entropy asso- 

ciated with individual particles. 

In developing the transport coefficients for the plasma,   the waves 

may be considered analogous to the fundamental particles of kinetic theory 

of gases.    A "kinetic theory" of the plasma may be developed in terms of 

the wave motions and their collisions with each other. 

In order to justify this model,   and to estimate the shock thickness, 

we will first demonstrate that a mechanism exists for building up these 

wave amplitudes;    secondly,  describe the particular waves which are 

selected as being most important;   and thirdly,   estimate the interactions 

between these waves that determine the mean free path for the waves.    The 

mean free path will then be used to estimate the shock thickness. 

Wave Growth 

If a wave packet is superposed on a compression front,   its energy 

will increase with time.     This can be seen in the following way.    A wave 

packet will exert a pressure of the order of magnitude of the wave energy 
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per unit volume on the surrounding medium.    If the surrounding medium 

is undergoing a compression,   the work done against the pressure exerted 

by the wave packet will appear as increased energy of the wave packet.    In 

the case of a one-dimensional compression front propagating in the x direc- 

tion,   this work is given by p      --H   per unit time where p       is the stress 
x_x. cue XX 

exerted by the wave packet in the x direction across a plane perpendicular 

to x and u is the flow velocity. It can be seen that if a wave packet spends 

a time in the shock front equal to the particle time in the shock front, then 

the ratio of its energy across the shock is similar to that experienced by a 

gas undergoing a similar isentropic compression. If, however, a wave 

packet spends a long time in the shock front,   its energy can grow indefinitely. 

In order to achieve a wave growth which is larger than the wave 

growth corresponding to an isentropic compression,   the waves must move 

such that they spend more time in the shock front than the gas particles, 

i.e. ,   they must have a drift velocity relative to the gas towards the up- 

stream side of the shock wave.    Since in a shock wave of moderate strength, 

the change in wave energy that is required is much more than the isen- 

tropic change,  the velocities of the waves relative to the fluid must be of 

the order of magnitude of the fluid velocity itself.     Therefore, if waves 

exist which can move at such a velocity,   they will be amplified by a suffi- 

cient amount. 

It is important to note that since a wave proceeding in an arbitrary 

direction will exert a pressure in the x direction,   this amplification 

process can operate for waves of arbitrary orientation provided that there 

is sufficient velocity in the x direction. 
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Selection of Important Waves 

The characteristics of the linear waves which can propagate in a 

plasma with zero particle temperature can be obtained by the usual small 

amplitude perturbation procedures.    For our case,  we can simplify this to 

some extent on the basis of the thickest shock hypothesis.    This hypothesis 

implies that we are interested in the longest wavelength waves which can 

produce a steady state shock structure.     Consequently,   we may neglect 

terms associated with charge separation,   since these have a characteristic 

length of the order of the Debye length.    Further,   we may consider the 

electron Larmor radius as being small compared to the wavelength.     The 

above two assumptions correspond to assuming charge neutrality and 

taking the electron mass to be zero.    With these approximations, the 

linearized equations become 

u    x H 
E + -^ ^2-   = 0. 

9 u. u.    x H 
m. e(E+-i r2_ ) =   o. 

9 t c 

(1) 

V   x H = 4 TT 
N  e o 

(   u;   -   U.    )■ ««•I     "-e V   x E = - 1 9H 
c Tt      ' 

where E is the electric field,   H is the magnetic field,   u    and u   are the 
- «e -i 

electron and ion velocities,   e and m.  are the ion charge and mass,   c is the 

velocity of light and the subscript o refers to the unperturbed plasma con- 

ditions.     The resulting dispersion relation is 

/     \4     /       4
2 2      r 

cos Z   6 +   (kr.)   2     cos2 
?J      + (r.k)4    cos2  0=0, 

(2) 



where u is the frequency,   co; is to the ion cyclotron frequency,   k is the wave 

number,  0is the angle between the wave normal and the unperturbed mag- 

netic field,   and r. is defined in footnote 3.     Since this dispersion relation 

is quartic in w,   there are two wave modes possible.    For small values of 

^k cos  9 , these reduce to one wave moving at the Alfven speed in all direc- 

tions and a second slower wave which moves at the Alfven speed based on 

the magnetic field component parallel to the wave vector.    As the wave num- 

ber increases the phase velocity of the faster of these waves increases, 

while that of the  slower wave decreases. 

In order to satisfy the criterion derived in the last section,     we 

must find waves whose group velocity is comparable to the flow velocity in 

the shock.     Since the shock wave must move faster than the Alfven speed 

ahead,   we must look for waves whose group velocity, perpendicular to the 

magnetic field,   is greater than the Alfve'n speed.     In Fig.   2,   this compo- 

nent of the group velocity is plotted for the fast mode as a function of the 

absolute value of the wave number,   with the direction of the wave vector 

chosen to maximize this component of the group velocity.    As can be  seen, 

the fast wave can satisfy the criterion of moving faster than the Alfven 

speed.     The slow wave never has a group velocity perpendicular to the 

field of more than half the Alfve'n speed. 

The dominant waves which will be present in the  shock wave will 

therefore be the fast waves described above which have a group velocity 

perpendicular to the magnetic field comparable to the flow velocity ahead 

of the shock wave.   (The ratios of group velocity to Alfven speed must be 

comparable with the Alfve'n Mach number of the shock).     The waves which 

exist should be thought of as a distribution of waves in wave number  space 

surrounding this general area. 
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The general characteristics of waves in this area are that the 

energy of the wave is mostly in magnetic energy and that the waves are 

essentially circularly polarized.     This may be understood physically in 

the following way:    when the frequency becomes large compared to the ion 

cyclotron frequency,   the ions cannot follow the wave motion and therefore 

the kinetic energy of the ions will be small.    Since magnetic energy is not 

interchanged with kinetic energy,   the magnetic energy must remain con- 

stant through the wave,   and this can be accomplished only by a circularly 

polarized magnetic vector.     The direction of polarization is opposite to 

the rotation of the ions about the zero order magnetic field.    For the slow 

wave, the polarization was predominantly in the opposite direction,   and 

hence,   these waves in the limit of large wave numbers correspond to large 

kinetic energies.    If a small but finite particle temperature had been con- 

sidered,  the slow wave would be strongly damped for large values of r.k. 

Wave Mean Free Path 

The interactions between waves may be estimated by considering 

the motion of one wave through the disturbed field produced by the other 

waves that are present.    A wave will be appreciably altered in amplitude 

and direction when its phase has been changed by unity (or its  "optical 

path" changed by l/k) due to the disturbing waves.    If we approximate 

Eq. (2)by neglecting the angular dependence of the dispersion relation and 

assuming r.k cos    0 » 1, it may be written as 

eH 
OJ 

mc 
2   T,2 r.   k 
i (3) 
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Since,  as pointed out previously,   the particle velocities associated with 

the wave are small when r.k cos0»l , the density fluctuations may also 

be neglected.    Hence,   r. in the above equation may be considered as a 

constant,   i. e. ,   it is unaffected by the perturbing wave field.    At constant 

frequency the change in wave number is then related to the perturbing 

magnetic field    A H    by 

AH 

H 

2Ak 
(4) 

The perturbing field of the other waves will be coherent over a distance 

of the order of the reciprocal of the mean wave number, i. e. ,    T-—  . 
m 

In going this distance,   the phase of the wave therefore changes by an 

amount 
AH. 

"ZH" —T-  .The phase changes by a random walk process with 
m 1 

steps of this amount each time the wave goes a distance   —*-    .     The 
m 

length   X   required to obtain an r.   m.   s.   phase change of unity (the mean 

free path) is therefore given by setting the product of the phase change per 

step and the square root of the number of steps    Xk      equal to unity: 

TTT 
m ß k 

(5) 

Here    ß 
AH 

c 
TT is the ratio of the average wave energy to the unper- 

turbed field energy.    As indicated,   we will set k      = k thus assuming that m 

only waves grouped about a single value of k have appreciable energy. 

The assumption which was made above that the disturbing field is 

changed in a random fashion in a distance    -r-—     assumes that there are 
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no correlations between the waves.    This may be justified by an argument 

analogous to the one used in kinetic theory for neglecting two particle 

correlations.     The wave field may be divided up into wave packets whose 

dimensions are of the order of     -r—  .    If the mean free path for the waves 

is appreciably larger than this wave packet size,  then on consecutive colli- 

sions a wave packet will interact with a completely different set of wave 

packets.    Therefore,   on any collision,  a wave packet will interact with 

wave packets with which it has not interacted before,   and it is reasonable 

to assume that no correlation exists.    If,   on the other hand,   the mean 

free path were less than the wave packet size,   a wave would continue to 

interact with the same neighbors,   and therefore,   strong correlations would 

be expected.    This argument is completely analogous to the kinetic theory 

argument,  that when the mean free path becomes of the order of magnitude 

particle size,  i.e. ,  when one goes from the gas to the liquid phase,   one 
4 

expects correlations to appear.    In our case,   this criterion is that X k =-»-»1 

This requires that       ß    be relatively small.    One would 

therefore not expect the theory developed here to apply directly to shock 

8 
waves with large Alfven Mach numbers where     ß    becomes large. 

The above estimate of the magnitude of wave interactions is,   at 

best,   a rough description of the interactions.     To be more precise,   one 

should distinguish between at least three types of interactions.     These may 

be described (1) as collisions which appreciably change the magnitude of 

the wave vector  (2) as collisions which change the direction of the wave 

vector and (3) as collisions which produce a net transfer of momentum 

from momentum of the wave field to the fluid itself.     For the purposes of 
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the present treatment,   we will not make any distinction between these 

three processes,   although for any more refined treatment,  this would be 

9 necessary. 

Estimate of Shock Thickness 

The conservation equations throughout the shock wave may be 

written as 

E    = E 

uH    = u.H z 1    z, 

pu = plul 

7    H 2   ,       z pu    + • 
H 

STT 

+  p   +     T    =   PjUj     + 
zl 

B* 

1       ^     uH 13.        z 
u,H 1     z, 

"Z PU     +"31:    +4Pu   +   TU   +   q   =-TP1
U

1 TT 

(6) 

where the gas velocity has been assumed in the x direction and the magnetic 

field in the z direction.    The gas density and velocity are denoted by p and 

u respectively,   while H    is the average local magnetic field,   E    is the 

average local y component of electric field and the subscript 1 refers to 

conditions ahead of the shock.     The pressure,  viscous stress and heat 

flux associated with the waves are denoted by p,   T and q.    The second 

equation follows from the fact that,   since the wavelengths present  are 

much greater than the electron larmor radius,   the electrons move 

adiabatically    (corresponding to infinite conductivity)     through 
E 

the shock wave and therefore have a drift velocity ^  
H 
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Since there can be no net current in the flow direction,   the mean velocity 

of the ions must be the same.    The energy equation has been written in 

terms of a ratio of specific heats of 4/3.    This is the appropriate ratio of 

specific heats for thermal energy invested in waves which can propagate 

in any of three directions. 

If a relation is given between the heat flux and the viscous stress, 

the above equations may be solved to give all of the properties inside the 

shock front in terms of one parameter,   for example,  the ratio of the 

velocity to the  supersonic stream velocity.     This relation,   which is the 

Prandtl number in ordinary aerodynamics,   is determined by the ratio of 

the mean free paths for momentum transfer to the fluid and for a change 

in the angle of the wave vector.    If these are of the same order of magni- 

tude,   the two transport quantities will be roughly equal or 

q« -UT (7) 

Using this assumption,   several quantities through the shock wave have 

been calculated,   and are shown in Figure 3.     It is interesting to note that 

the wave pressure is appreciably higher in the center of the shock wave 

than it is on the  subsonic side.    The total pressure,   i.e. ,   the sum of the 

magnetic pressure and the wave pressure,   rises monotonically to its 

downstream value.     The existence of a maximum in the wave pressure is, 

of course,   not a result of the wave picture,   but the general case for a 

magnetohydrodynamic shock wave. 

In principle,   it should be possible to develop the kinetic theory 

picture of these waves further and estimate heat conduction and viscosity 

coefficients in terms of the mean free path described earlier.    However, 
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the accuracy with which the mean free path was calculated does not seem 

to warrant a precise description of the kinetic theory.    In parallel with the 

accuracy given there,   it seems sufficient to assume that the shock thick- 

ness is about twice the mean free path,   as it is for a strong shock wave in 

ordinary aerodynamics.     The comparison with a strong shock wave is more 

appropriate than comparison with the same Mach number shock wave since 

the wave pressure ratio in our case is infinite,   as it is for a very strong 

aerodynamic shock.    This means that,   in both cases, the entropy produc- 

tion in the shock must be equal to the entropy which is convected out of the 

shock region in the downstream gas.     Since the assymmetry in the distribu- 

tion function depends on the gradient per mean free path of the flow quan- 

tities,   and since the rate of dissipation depends on the assymmetry squared, 

the total dissipation in the shock depends on the ratio of shock thickness to 

mean free path.    Since, in both cases,   comparable amounts of entropy 

must be produced,  we would expect the ratio of shock thickness to mean 

free path to be roughly the same. 

In terms of these assumptions and the mean free path given in 

Eq, (5), we may write the  shock thickness as 

L = 
8 

r max 
(8) 

where       ß is chosen as the majcimum value of   ß     in the shock and k r max r 

is chosen to give a group velocity in the x direction equal to the supersonic 

flow velocity.     From Fig.   2,   this may be approximated by 

Ul 
(9) 

kr. 
ll 

2   M, 
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where VAis the Alfve'n speed and MA the Alfve'n Mach number.    The re- 

sulting shock thickness is then 

4 r. 
i 

r max     A 
(10) 

Comparison with Experiment 

10   11 
Patrick has used a magnetic angular shock tube (MAST) to 

study the thickness of shock waves in this range.    The shock thickness was 

determined from the time history of the brems Strahlung emitted by the 

plasma.    His results have been re-plotted in Figs.   4 and 5.    By comparing 

the experimental shock thickness at low densities in Fig.   4 with the inter- 

particle collision free path and with the collision shock thickness (estima- 

ted for a strong shock in the absence of a magnetic field),   it may be seen 

that the data clearly indicate a shock thickness much smaller than could 

be accounted for by interparticle collisions. 

The reliability of this data in predicting the actual shock thickness 

is open to some question.    In Fig,   4,   all of the measured thicknesses lie 

quite close to the size of the annulus which contained the gas,   suggesting 

that geometrical effects related to the shock tube size might influence the 

measurement.    However,   attempts to see if the apparent shock thickness 

was due to the shock wave being tilted seemed to indicate that this was 

not the case.    Also,   some of the high Alfven Mach number data in Fig,   5 

gave thicknesses considerably less than the annulus spacing,   indicating 

that the influence of the annulus size is small.    Another questionable point 

is associated with the determination of the  shock thickness from the oscil- 

lograms.    Particularly at low Alfven Mach numbers,   the light intensity 
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through the shock exhibits a sharp change in slope at about half the final 

light intensity.     The thicknesses shown correspond to the total rise time. 

If the detailed shape of the oscillograms is to be trusted,   a definition based 

on the maximum slope would have indicated considerably less variation of 

the shock thickness with Alfve'n Mach number.    However,   since the theo- 

retical estimate is based on a gross overall thickness,   it seems appropri- 

ate to compare it with the thickness based on the total rise time. 

The dependence on density in Fig.   4 and on Alfve'n Mach number in 

Fig.   5 is in fortuitously good agreement with the theoretical estimate.     The 

absolute magnitude of the theoretical prediction is at best good to a factor 

of three.    Equally valid arguments can be presented which vary the result 

by this amount.     In particular,   the apparent improvement between this pre- 

diction and the one presented previously1    is not to be taken as a refinement 

of the theory. 

If the apparent agreement is to be taken as a confirmation of the 

theoretical model,   it is interesting to speculate that a similar type of 

kinetic theory based on wave interactions would be appropriate for other 

dissipative flows in plasmas.    It is worth noting that since the waves which 

have been postulated will have some damping,  thermalization of the parti- 

cle motions themselves will probably also occur in a distance small com- 

pared to the interparticle mean free path. 
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LOGio OF TEMPERATURE   IN  e.v. 

Fig.   1       Classification of different regions in plasma dynamics.    In 

each area of different shading,   one would expect appreciably 

different plasma characteristics.     The gas pressure was 

assumed equal to the magnetic energy density and the i< 

were assumed to be deuterons. 

ions 
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WAVE  NUMBER   kn 

Fig.   2      The ratio of the maximum group velocity perpendicular to the 

magnetic field to the Alfven speed as a function of the product 

of the characteristic ion Larmor radius and the magnitude of 

the wave number for the faster of the two magnctohydro- 

dynamic modes in a zero temperature plasma. 
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Fig.   3      The ratio of pressure to the energy density of the uniform 

component of the magnetic field and the ratio of heat flux to 

the kinetic energy flow in the  supersonic  stream are plotted 

as a function of the ratio of velocity to the supersonic stream 

velocity.     These curves have been drawn under the assump- 

tion that the viscous and heat conduction effects are compar- 

able.    The ratio of specific heats,   denoted by   9    ,   was taken 

to be 4/3.     The curves of the non-dimensional pressure have 

been terminated at the final value corresponding to the down- 

stream flow condition. 
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Fig.   4      Comparison of the experimental density dependence of the 

shock thickness with the theoretical estimate based on wave 

interactions.     The agreement is much better than the uncer- 

tainty in the theoretical prediction,   which is at least a factor 

of three. 
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Fig.   5     Comparison of the experimental dependence of the shock 

thickness on Alfven Mach number with the theoretical 

estimate based on wave interactions. 
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of an ion moving at the Alfven speed and is   r. J-ü*!     ^       where m 

is the proton mass,   c is the velocity of light,   N it th^particle density 

and e is the electronic charge.    The corresponding characteristic 

electron Larmor radius is smaller by the square root of the mass 

ratio. 
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The tacit assumption which has been made that the scattering of waves 

on waves is incoherent will be discussed in more detail below. 

An important distinction is to be noted in this regard between this 

case and the case of ordinary aerodynamic turbulence.    These two 

cases are,  of course,   similar in the sense that large scale motions 

lead to dissipation.     The basic difference resides in the fact that the 

magnetohydrodynamic waves propagate through the fluid in the 

absence of other waves,   while the turbulent eddies have no velocity 

relative to the fluid in the absence of other eddies.    Therefore,  while 

the magnetohydrodynamic wave moves away from its neighbors 

between collisions,   the turbulent eddv does not.     Correlations are 

therefore unimportant in the magnetohydrodynamic case but very 

important for ordinary turbulence.     This makes the magnetohydro- 

dynamic problem considerably more tractable theoretically. 

The existence of a momentum transfer from the waves to the fluid or 

some form of friction between the wave field and the fluid is required 

to form a shock wave,   since in the absence of such friction,   there 

would be no coupling between the mean velocity of the wave distribu- 

tion and the fluid.     This relative velocity corresponds to a heat flux. 
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Since the amplification mechanism builds up principally waves with a 

large velocity relative to the fluid,   in the absence of friction the 

corresponding heat flux would continue into the downstream region. 

This is incompatible with the Rankine-Hugoniot equations.    At first 

sight, one might expect that interactions between waves would con- 

serve momentum in the wave field.     This difficulty can,   however,   be 

obviated by at least one mechanism.     This is that interactions be- 

tween fast waves could transfer momentum to the slow waves.    Since 

the  slow waves move almost at the fluid velocity and since these waves 

have appreciable damping,   this may be considered effectively as a 

transfer of momentum to the fluid. 

Interactions which determine the rate of change of the magni- 

tude of k are not important in determining the transport coefficients 

of the gas.     Their importance is associated with the dependence of 

the mean free path on the mean value of k, and the fact that the exist- 

ence of very large values of k would give rise to appreciable damping 

of the waves.    If one considers interaction of the waves by the non- 

linear superposition of two waves,   it is easily seen that the scattered 

wave must have a wave number and frequency which are the sum or 

difference of the wave numbers and frequencies of the superposed  ' 

waves.    Since the scattered wave must also satisfy the dispersion 

relation,   only a limited group of waves can interact.     In general, 

this limitation requires the initial wave vectors to be at a consider- 

able angle to each other so that the magnitude of the resulting wave 

vector is not much larger than the initial ones.     The order of magni- 

tude of the mean wave vector will therefore not change appreciably 
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in the relatively few collisions required for a shock wave.     Thus the 

wave mean free path is the one appropriate to waves of the wave 

number selected by the growth mechanism,   and further,   the wave 

field will not be damped through a diffusion to large k values, 
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